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Abstract—We present a wearable assistant for Parkinson’s Yahr (H&Y) scale is commonly used to describe symptoms of

_c:i;_ease (PDlgl patients with the freebzigg of gailt (FOG) symptom. PD progress. The scale uses five stages to indicate theveelati
is wearable system uses on-body acceleration sensors tQaye| of disabili The fiv re:
measure the patients’ movements. It automatically detects FOG evel of disability [3]. The five stages are:

by analyzing frequency components inherent in these movements. ¢ Stagel: Symptoms on one side of the body only.
When FOG is detected, the assistant provides a rhythmic auditory o Stage2: Symptoms on both sides of the body; no impair-
signal which stimulates the patient to resume walking. ment of balance.

Ten PD patients tested the system while performing several | giages3: Balance impairment; mild to moderate disease;
walking tasks in the lab. Over eight hours of data were recorded. hvsically independent
Eight patients experienced FOG during the study and 237 FOG pny y P . o i
events were identified by professional physiotherapists in a post- ¢ Staged: Severe disability, but still able to walk or stand
hoc video analysis. Our wearable assistant was able to provide unassisted.
online assistive feedback for PD patients when they experienced o Stage5: Wheelchair-bound or bedridden unless assisted.
FOG. The system detected FOG events online with a sensitivity
of 73.1% and a specificity of 81.6%. The majority of patients . .
indicated that the context aware automatic cueing was beneficial A- Freezing of gait

to them. Finally we _characterize the system performance with FOG typically manifests as a sudden and transient inability
respect to the walking style, the sensor placement, and the to move. About 50% of all PD patients regularly show FOG
dominant algorithm parameters. ) . . .
o _ _ symptoms [4]-[6]. 10% of PD patients with mild symptoms
Index Terms’—A§S|st|ve cueing, context awareness, freezing of 3nd 80% of those severely affected regularly experienazfre
gait, Parkinson’s disease, personal health assistant ing. FOG occurs more frequently in men than in women and
less frequently in patients whose main symptom is tremor
I. INTRODUCTION [7]. PD Patients who experience FOG frequently report that

EARASLE HEALTH ASSISTANTS are lecaic 18, 58 e Faoaoy ghee i e g curng e
coaches that help patients to negotiate specific prob- &P Y . o ighly

L : . sensitive to environmental triggers, cognitive input anedim
lems related to their disease. In this article, we evaluate”a

context-awarewearable health assistarib help Parkinson’s cattion. For example, FOG occurs frequently at home and much

disease (PD) patients experiencing freezing of gait (FO(%ESS frequently in the doctor’s office or in a gait laboratory
r

The wearable health assistardgims at reducing the numbe FéGEvaIUiEIO:nOJr FOF%GC?nd'TOnS :;V usua*t)lly donef lfjrsmgina
and length of their motor blocks and thus increase theirtgaf questionnaire ( Q) [10]. Five subtypes of freezing

; ' ‘have been described by Schaafsma et al.: start hesitation, t
while walking. oo oo T
. . . hesitation, hesitation in tight quarters, destinationithden
PD is a common neurological disorder caused by the

. . ) . and open space hesitation [8]. FOG has substantial sodal an
progressive loss of dopaminergic and other sub-corticat ne

. . . clinical consequences for patients. It is a common cause of
rons [1]. PD patients often suffer from impaired mOto{;alls [11], interferes with daily activities, and signifitidy
skills [2]. Besides a flexed posture, tremor at rest, rigjdiki- ' y ' 9

. . . . impairs quality of life [12].
nesia (or bradykinesia) and postural instability, motayckb P q y [12]
are a common negative effect of PD. Motor blocks (freezin o ) )
most commonly affects the patients’ legs during walking arfer Limits of pharmacological treatment for FOG prevention
is generally referred to as FOG. Clinical assessment of PDPharmacological management of PD is difficult and often
is largely based on subjective patient reports. The Hoelan aneffective at relieving FOG. The most common form of
treatment used to manage motor symptoms in PD patients is
Manuscript r_eceived February 9th, _2009. Revised mar_]_us;_tarqﬂjved July Levodopa (LD). The effect of LD on parkinsonian symptoms
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is no longer effective. As the disease progresses the effiect « An objective evaluation of the FOG aware assistant by
duration of each drug dose shortens and more frequent LD analyzing the accuracy in detecting FOG;
administration is necessary [7]. In addition, the develepin « A subjective evaluation of the study by analyzing the
of involuntary movements (i.edyskinesia and the OFF/ON patients’ perception of the automatic context aware RAS;
phenomena further limit mobility and complicate dosing. « A detailed post-hoc performance analysis and assessment

Although FOG episodes generally appear more frequently of potential optimizations;
during the OFF state, gait deficits in PD patients are often
resistant to pharmacologic treatment [11]. Thereforectffe

. [l. WEARABLE ASSISTANT FOR ONLINEFOGDETECTION

non-pharmacologic treatments need to be developed as anh

. . ; . AND RHYTHMIC AUDITORY CUEING
adjunct therapy to relieve symptoms and improve mobility.

A. Wearable Assistant Research Hardware

C. State of the art in non-pharmaceutical treatment of FOG Tpe wearable assistant is based on a tiny computer capable
Various behavioral 'tricks’ were developed by cliniciamsla of recording data and online signal processing. It is a cus-
patients to overcome freezing attacks. These tricks imclutbmized research platform based on an Intel XScale family
marching to command, stepping over a walking stick or cracksocessor and using a Linux operating system designed for
in the floor, walking to music or a beat, and shifting bodyapid prototyping. It offers processing power comparalole t
weight. Such external cues are commonly considered eféecti
in alleviating FOG symptoms in PD patients [13], [14]. Earphones
Lim et al. [15] performed an extensive review of the effects ‘
of external rhythmical cueing on gait in PD patients and fbun \.\}
strong evidence for improvements in walking speed with the {
help of auditory cues. Insufficient evidence was found far th
effectiveness of visual and somatosensory cueing. Sipilar
Nieuwboer et al. showed that auditory cueing is advantageoy™
with respect to visual and somatosensory cueing [16].
Rhythmic auditory stimulation (RAS) was shown to be
particularly effective at improving gait among PD patients
Regular metronome ticking sounds were applied as RAS with
a rate of 110% compared to the natural walking rate of the
tested patient. This served to enhance their gait speed and
reduced gait variability (i.e., it improved gait stabilif§7]).
But there was no relative advantage to using this methoddg 1. FoG detection and feedback assistant worn by oneriaBensors
improve gait in patients with PD_ that also suffer from FOGre attached to tlre ihanlél (]SL:?; ""Zﬂﬁe Vtgirgmi\li)h?gdsg:; g,";gﬂﬁ'i‘év{% ttl;:z
I(:F;)Dg I(:F? DG- Lg%f;\r[)fg]%dl r:?erF;[s)uﬁgﬂfr:z t\lljvg;) ig?/vﬂ(i)cthsgf[f)irFf(go ovS:r) g;(lznkgtg r:heeassallr(r:1|(§eb(elt thgt the Wearable computer is atiaich

patients used the metronome recordings for cueing at home . .
showed no effect in reducing the freezing symptoms [18]. an ultra portable PC with power consumption beW . The

Therefore, the reason for investigating the proposed dev%;sctf;nergnvi;g:aa% rigr]namﬁt;n]jgzaﬂgé&g?ﬁ)h b agei?'s-:—;:
is to combine the incidental effect of external cueing B 9 P X 02 SUmm

! : : . : . and weights231 grams. The system is modular in order to
Zgﬁwﬁtepféeizggnvtvslthéﬁiﬁ ﬁaec(;é)\jiggd\:\tlﬁlrypﬁg\;lgg tg ASl onl realize different feedback and sensing modalities. By ulefa

during an actual or impeding FOG event. ¥t offers _USB and.BIuetooth as ext.ension interfaces, gh@lv_i
connections to diverse physiological and non-physiolagic
L sensors [19]. The system can be extended using Zigbee or
D. Contribution ANT wireless interfaces with USB dongles. To avoid protrud-
Past work using RAS either relied on an experimenter tag parts as well as unintended disconnection of these dengl
trigger cueing or on continuous cueing during the trainingie system provides an internal USB bay within the system’s
session. In order to help PD+FOG patients during daily liféyousing. There is also space and an interconnection plitysibi
we propose a device that can provide context-aware acousc an internal PCB extension board. The extension board is
feedback to assist the patient. Such a wearable assistint interfaced to &.5 mm jack at the front and is intended to be
provide RAS only during an actual or impeding FOG eventised to prototype various signal acquisition and conditign
Thus, the device acts as a context-aware wearable assistafitiware (e.g. for ECG or galvanic skin response sensing),
that activates only when necessary and remains transpainto provide user feedback. In the current version for the
in the other situations. Specifically, we present the follmv study the wearable assistant was implemented by extending

Sensors

Serld USBhost VGA  Battery (undemeath)

- @

contributions: the system with an auditory feedback module and earphones
« A personal wearable assistant including algorithms tonnected to th&.5 mm jack.
detect FOG online and provide RAS; Two sensors used to measure 3D-acceleration were attached

« A study with 10 PD patients to evaluate the system; to the patients’ leg; one at the shank, just above the ankle,
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and the other to the thigh, just above the knee. A third 3D-105 " Powerspemraldens 1011 PowerspemmensnyWFOG
accelerations sensor was attached to the belt, at the laekr b .

of the patient. The acceleration sensors2ire44 x 17 mm? in

size and weigh less tha® grams, including a rechargeable g 6 a ¢ ‘

300mAh Li-ion battery with 6 1 battery life. The acquired . Toa b

data is transmitted to the wearable computer over a wire—2 , .i::‘”ﬁ

less Bluetooth link §4 Hz) for online data processing. The dé,sf:'i‘;':‘vv'i'ﬁm

earphones are placed loosely around the patient's neck. Theé; 202 e s 100 120 % 20 40 60 8 100 120
computing system produces BH: ticking sound starting Freavency izl Freauenoy 2
whenever an FOG episode is identified and ending when the (& PSD for walking. (b) PSD for FOG.

patient resumes walking. Figure 1 shows the wearable systempx10® ~ Foversecaidensty Cumlative power speciral density
. dii —
worn by a patient. [_standng] 100 -

80

8

6 60 ' o ——walking
/ : standing
---FOG

B. Principle of the FOG detection algorithm 2

'
40 !
[

PSD distribution [%)]

A
Bonato et al. presented the first evidence that data mining
and signal processing allow to recognize the presence and
severity of motor functions in PD patients [20]. Hausdorff o
and colleagues examined the ground reaction force signal

measured with force sensitive insoles in the shows worn (c) PSD for standing. (d) Cumulative power distribution

by PD p_atlentS thfat W_ere Wal!<|ng normally or eXp_enenCInH . 2. Power spectral density (PSD) and cumulative powerilligion from
FOG episodes. Using time series and fractal analysis mSthQCﬁzs Hz for walking, FOG and standing. Please note the rdiffescale in
they found that FOG is not a frozen akinetic state, nor #&ibfigure (c).

freezing a random, uncorrelated attempt to overcome motor

blockades [21]. Instead, the measured forces signal atsill

in a fairly organized pattern. More recently, Moore et al. We used theContext Recognition NetworlCRN) Toolbox
measured the vertical acceleration of the left shank of 11 REB] for the algorithm implementation on the wearable devic
patients and analyzed the power spectra @vefc signal in- During the study we only used the shank sensor data for online
tervals [22]. They discovered that high-frequency comptgie FOG detection. In order to avoid aliasing, the leg motion
of leg movement in the3f8 Hz] band during FOG were not was sampled ai4 Hz. A rectangular window function with a
apparent during normal standing or walking. Moore intragtlc window length of4 sec is used. The windowing itself is done
a freeze index (FI) to objectively identify FOG offline. Thit$ in steps 0f0.5 sec. For the PSD @56-point FFT is calculated.

is defined as the power in the 'freeze’ baBei Hz] divided by The locomotion band betweef.§-3 Hz] and the freeze band
the power in the 'locomotor’ band[5-3 Hz]. FOG is detected between §-8 Hz] have been chosen as suggested in [22].
using a 'freeze’ threshold. FI values above this threshoéd a The flow chart of the algorithm, including the algorithms’
identified as FOG events. parameters, is given in figure 3.

20

ol
0 20

20 4 101 100 120

6 0 40 60 80
Frequency [Hz] Frequency [Hz]

C. Online Implementation of the Algorithm
. . . I1l. PROOF OF CONCEPT STUDY
We developed an online FOG detection algorithm based on

the principle described by Moore and introduced the foltayvi
improvements: i) a reduced latency, ii) inclusion of an gger
threshold, and iii) real-time online operation. For our study idiopathic PD patients with a history of
Figure 2a-c) shows the power spectral density (PSD) derive®@G, who were able to walk unassisted in the OFF period,
from a signal of walking, FOG and standing sampled atere recruited. Patients were excluded if they had severe
256 Hz. Figure 2d) depicts the cumulative percentage of totaision or hearing loss, dementia or signs of other neuro-
power in the PSD. One can see that human movement maildgical/orthopedic diseases. The study was approved by the
has frequency components betwegand 30 Hz. More than local Human Subjects Review Committee, and was performed
96% of the total energy is within this range for walkingn accordance with the ethical standards of the Declaration
and FOG. For standing, there is hardly any movement anfl Helsinki. Ten PD patients (7 males) diagnosed with PD
therefore the PSD is dominated by sensor noise. A6l (66.5+4.8 years; Hoehn-Yahr score (H&Y) in OBl +0.65;
of the signal energy is below.5 Hz, the rest is approximately see table 1) took part in this study. Motor performance among
equally distributed over the whole frequency spectruvhife PD patients generally shows large variability. This wa® als
noisg. Apart from the frequency distribution, the total energthe case among the group of patients who participated in
content of standing is substantially lower than for FOG dhis study. For example, during non-freezing episodes some
walking. This fact allows us to define an energy thresholgatients maintained regular gait that could hardly be miisti
which we calledPowerTH to distinguish between standingguished from that of healthy elderly people, while otherd ha
and the other states. a slow and unstable gait.

A. Participants
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Algorithm flow chart i Algorithm parameter
Body motion | - Sensor position (place)
i - Sensor orientation
Acc-Acquisition i

: - Number of axis used
i - Sampling rate

lacc samples

Windowing | - Window length
i - Window function
le‘gsamples
Freq. analysis ! - FFT length

PDS | Fig.
Energy sum | |Energy sum ; - ‘Locomotor’ band
‘Loco’ band | |'Freeze' band i - ‘Freeze’ band
Eeeo Efecee
Encmﬂeei Er ;
Energy 01 i - Energy threshold
Thresholding ‘
F @
Freeze index | i - Freeze threshold
Thresholding | !
(b)
FOG detection '
Fig. 3. Flow chart describing the FOG detection algorithraluding all
parameters.
(©)
B. Protocol

The study was carried out in the Laboratory for Gait and
Neurodynamics at the Department of Neurology of the Tel
Aviv Sourasky Medical Center (TASMC). Patients were tested
in the morning during the OFF stage of the medication cycle
(more than 12 hours after their last anti-parkinsonian kaedi
tion intake). Two patients, who reported frequent FOG eggso
during the ON state, were not asked to avoid medication
intake. After signing an informed consent form, the pasent
were shown how the device works and how to take advantage
of the RAS in case of freezing. The study protocol was based
on two sessions, one without RAS feedback and one with RAS

Subject  Gender Age Disease duration H&Y Tested in
ID [years] [years] in ON
01 M 66 16 3 OFF
02 M 67 7 2 ON
03 M 59 30 25 OFF
04 M 62 3 3 OFF hall.
05 M 75 6 2 OFF
06 F 63 22 2 OFF
07 M 66 2 25 OFF
08 F 68 18 4 ON
09 M 73 9 2 OFF
10 F 65 24 3 OFF
Mean 66.4 13.7 2.6
+ STD + 4.8 + 9.67 + 0.65
TABLE |

GENDER, AGE, DISEASE DURATION ANDH&Y RATING OF THE PATIENTS

Walking tasks:
(a) sﬂaig_ht Ii_ne_

4. Sketch of the path taken by the subjects during thaystu

! feedback that sounded whenever the wearable device d#tecte
3 a freezing episode online. Each session consisted of tlasie b
walking tasks designed to represent different aspects ibf da
walking. Figure 4 depicts a sketch of the path taken by the
subjects during the study. The walking tasks included:

Walking back and forth in a straight line along the lab
hallway, including several 180 degrees turns (dashed line
in figure 4),

Random walking in a reception hall space, including a se-
ries of initiated stops and several 360 degrees turns (tlotte
line in figure 4). The experimenter issued instructions to
the subject to stop or to turn in different directions (at
least six turns, three in each direction),

Walking simulating activities of daily living (ADL). Té
ADL part included entering and leaving rooms, walking to
the lab kitchen, getting something to drink and returning
to the starting room with the cup of water (dash-dotted
line in figure 4).

Therapist

taking.notes

W Assistant
for vide '

Therapist

for y re:

Fig. 5. Snapshot of a typical experimental session, degiciite PD patient
(left) equipped with the wearable system performing randoatksvin the

The therapist (right of the subject) instructs the Rilignt and cares for

his safety. The research assistants (right back) documergession.

During the first session, the device recorded all necessary
data and performed online FOG detection; however, the RAS
feedback was deactivated.

The second session was a repetition of the first one, with
the exception that the RAS feedback was now activated. The
length of each walking session was abo0t15 min. Patients
walked at their own natural pace without assistance, but a

therapist remained close by for safety reasons (see figure 5)
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At the end of the study, patients returned to the examining IV. RESULTS OF THE STUDY
room, took their medication, and were debriefed by a thetapiA. Study statistics
The protocol was approved by the ethics institutional ngvie ) i
board of the TASMC. All participants completed the protocol In total,8 h 20 min of data were recorded. Eight patients out

no side effects were observed or reported and no speé?(fthe ten exhibited FOG during the study; two patients did no
accommodations were needed. have any freeze events. The walking distance and number of

turns depended on the patient’s gait speed. One patiend coul
_ not perform the ADL part. 237 FOG events were identified
C. Annotation of Ground Truth from the video recordings by the physiotherapists rangiomf

All walking trials were recorded on a digital video camerd) — 66 per patient with a mean af3.7 [S.D. 20.7].

The leg movement data was synchronized with the video The length of FOG events ranged from 0.5 sec to 40.5sec.
recordings using three synchronization steps at the biegjnn(mean 7.3sec [S.D. 6.7 sec]). 50% of the FOG episodes lasted
of each recording session. One physiotherapist took ndtesl€ss than 5.4sec, and the majority (93.2%) were less than
relevant events during the session. Another assistantatedo 20 sec long (figure 6). These results are similar to earlieGFO
the patients’ current activity (e.g. standing, walkingrning

and freezing) in real time by pressing corresponding keys on 40
a laptop computer.

In a post hoc analysis physiotherapists analyzed the video
recordings to identify FOG events and determine the exact
start times, durations and end times. The beginning of a FOG
event was detected when the gait pattern (i.e., alternégiihg
right stepping) was arrested, and the end of FOG was defined
as the point in time at which the pattern was resumed. This
procedure was similar to an earlier established one [8].

Histogram of FOG event durations

N
[$))

= N
o

Number of FOG events
S

[

o

0 5 10 20 25 30

15 35
FOG length in seconds

40 45

D. Subjective evaluation of the study

Distribution of the number of FOG events of a specification

For a subjective evaluation of the system, we asked tﬁ')%ngéd 1o the nearest second.

participants to fill out a standardized self-report of patie
satisfaction and a questionnaire to qualify the systemet@p duration characterizations [8].

tion. Thevisual analogue scal@/AS) and theClinical Global W did not experience technical problems during the record-
Impression Change scal€GIC) were used. ings. RAS started properly whenever a FOG episode was

The VAS is a visual sliding scale with two anchor pointsgetected and stopped again when FOG was no longer detected
one at each extreme. One anchor point is at “0” (i.e., 'wdrsthy the algorithm.

and the other at “10” (i.e., best). Respondents specifyr thei

level of agreement to a statement by indicating a position on . _

the VAS between the two end-points [24]. Using the VASS: Online FOG detection performance

patients had to grade their walking performance before andDetection performance was evaluated usingsec time

after the study, the comfort of the system components and tfh@mes. The video annotations from the physiotherapiste we

usefulness of the system for their everyday life. used as reference for all our algorithm performance evalu-
The CGIC is a seven point scale that assesses how muchatiens. The system was required to recognize FOG in less

patient’s performance or illness improved or worsenedivgla than 2 sec after it's onset in order for it to be reported as a

to a baseline state at the beginning of the intervention 28] successfully detected FOG event.

example, in our questionnaire we used the scale to report thd=igure 7 presents the detection accuracy with reference

change in FOG duration due to using our system. The scébesensitivity and specificity for each individual patie@n

had the following seven anchor points: +3 = much longeaverage the sensitivity and specificity of the online FOG

+2, longer; +1, minimally longer; 0, no change; -1, miningall detection werer3.1% and81.6%, respectively.

shorter; -2, shorter; or -3, much shorter. Furthermore, theThe system did not perform equally well for all patients.

CGIC was used to rate the number of FOG events andTihe best results were obtained for patie@tsand 10. The

patients preferred to hear the RAS more or less frequembrst result in terms of specificity was obtained for pati@ht

To evaluate the experiment form another perspective, t(@8.7% specificity, 97.1% sensitivity). The worst result in

physiotherapists answered a complementary questionatirdgerms of sensitivity was obtained for patied& (28.7% sensi-

the end of the completed study. The physiotherapists weidty, 87.7% specificity).

asked how they would rate the usefulness of the system, th&Ve identified that these large variations were caused by

influence on the patients’ gait and the suitability for use idifferent walking styles of the patients. Pati@itsuffers from

everyday life. Furthermore the physiotherapists were ciske foot drop while walking, which is characterized by intense

saw that patients benefited from the context aware cueing astdpping movements along the vertical axis. For patidrthe

used it or if it was disturbing [26]. system was mostly not able to distinguish between walking
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Sensitivity and specificity for online FOG detection . . L.
100t L10 feedback occurrence was just right. One participant sugdes
8 2a9 o 4 introducing variations in the audio tone and rhythm to avoid
80 =5 becoming used to the system since he believed this could make
o6 the RAS feedback even more effective.
60y Similarly one physiotherapist suggested adjusting theptem
of the RAS according to the walking speed of the patient.

Six participants were optimistic that such a personal assis
tant could be helpful in their everyday life. The other four
participants said the trial was too short and they could not

‘ ‘ ‘ ‘ really judge the usefulness. The physiotherapists also saw
° 2 Sty O potential in the system to support PD patients in their edayy
life. They thought the context aware automatic RAS will be
Fig. 7. Sensitivity and specificity distribution for onlinetection accuracy. especially helpful for PD patients experiencing long FOG
Numbers correspond to each specific patient. events but are much aware of the RAS and capable to adapt
to the rhythm. Overall, the self-assessment indicatessthaie
the patients benefit from the assistive device.

Specificity [%)]

40 al

20r

periods and very short freezing events when using the glol?zil
algorithm parameter settings.
Patient 08 was the patient most affected by PD (H&Y V. SYSTEM PERFORMANCE OPTIMIZATION
stage: 4) and had the most difficulties to walk. She had theln this study, we used our modular research platform to
slowest and most limited mobility. This made it hard for thérst investigate performance of the algorithm and percepti
device to distinguish between voluntary standing and FOGI, the PD patients. However, the applicability of a FOG
which explains the low sensitivity of the system for pati@8t assistant in daily life depends on multiple factors. As sfow
For the remaining patients, sensitivity and specificityueal previously, the system should be adjusted to the walkinig sty
were close to or higher than 80%, as shown in figure 7. of each user. To maximize functionality and minimize cost it
is desirable to enable a fast, simple and robust set-up of the
C. Subjective questionnaire results _param_eters by care personal or the user themselves. Comfort
i ] is an important aspect that directly relates to the on-body

_All patients reported that the system was unobtrusive apthcement of the sensor, but may result in a trade-off with
d!d not interfere _W|t_h chomotlon. Also_ the physmthera_pls system performance. Finally, the perceived response tios m
did not see any indication that the patients’ normal gait wag minimized while maintaining robust performance. In this

disturbed by the physical size and weight of the sensors agdtion, we characterize the system with reference to these
the wearable computer. However two physiotherapists 9d'ntasPects and show how it may be improved.

out that the size of the computing system and the attachmen
[i:‘lstgt?j?jii_the belt should be improved for use in everyd%\( Subject dependent parameter optimization
Regarding benefits of the device, five out of eight patients Ve analyze the influence that the two detection threshold
who experienced FOG during the study said that they hRa@rametersowerTH and FreezeTHhave on the performance
less freezing events with the device. The three other patieff the detection algorithm, when using the sensor data of the
could not see any change. Five patients had the impressﬁﬂkle position on the vertical axis. When optimizing the dete
that their freezing episodes were shorter with the device.
Only one thought his episodes were longer than usual, and
two could not determine any change. Half of the patients
who experienced FOG during the study observed fewer and
shorter FOG events. The physiotherapists rated the influenc
of the automatic identification of FOG events and RAS feed-
back as beneficial, especially for patients with severe FOG.
With respect to the occurrence of the feedback, two patients
expressed their preference to hear the RAS less often. In
their case, the system was too sensitive resulting in a too
many RAS OccurrenC.eS' Their r.eac.tlon tends to .support IHS 8. Min(Sens,Spec) plot for patient 01 (vertical axistoé sensor at the
observation that continuous cueing is not appreciated by thhkie).
patients and that RAS should be context-aware. Particgpant
for whom the detection sensitivity was low demanded to havien performance there is a trade-off between sensitivitgt a
RAS assistance more often. Low sensitivity resulted in edssspecificity. For our work we chose to take minimum sensitivit
FOG events in these patients and therefore they did not alwand specificitymin(Sens, Spec) as a performance measure-
get the auditory assistance when experiencing FOG evemt®nt, because the maximum point in thén(Sens, Spec)-
This tends to support the previous observation that patieotata space corresponds to the parameter combination where
felt a benefit from RAS. Three participants reported that ttihe performancequal error rate(EER) is at a minimum. The

Patient 01, sensor at ankle, vertical axis

=)
S

80
60
40
20

min(Sensitivity, Specificity) [%]

power TH [in 2]
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EER is commonly used to compare two systems, becauseédts for 'smooth’ and ’intensified stepping’ walking styles
gives a single scalar value. The lower the EER is, the maorerformance is quantified with respect to the user-spedafic p
accurate the system is considered to be. In our performaricemance using the equation Pegf = (Sens,; - Sens.,;) +

evaluation the EER is given by (Spec¢,: - Speg.s:) where Seng,; and Speg,; are achieved
EER—1— max {min(Sens, Spec)} using the param_eter set being evaluated. A smaller, Reré
freezeT H,powerTH correlated to an improved performance of the tested pasmet
set.

Wheremax freezer o powerr s {min(Sens, Spec)} is the max-

imum point in themin(Sens, Spec) data space. Figure 8 For the performance evaluation using global, user inde-

pendent parameters we performed a leave-one-out Cross-
Patient 01 Patient 02 Patient 03 Patient 05 validation, which means that the global parameters are op-
10 10 10 § timized for N-1 subjects and performance is tested on the

i remaining subject. This step is repeated until the perfocea

3 was tested for all subjects. Cross-validation allows us to
5 evaluate how well the system behaves when it is applied
)

5

1

FreezeTH

H to patients whose data was not used during the parameter
0 optimization. In other words, it indicates how well the syat
3 7 12 17%5 7 12 17%15 7 12 17%15 7 1o 17  Canbe generalized. User-independent performance isaitedic

PowerTH in 2* in figure 10b). On average the algorithm performance with
0 Patient 06 10 Patient 07 10 Patient 08 10 Patient 09 global parameters is 11.1% (STE5.3%) below the optimal

user-specific performance.

Finally we analyzed the detection performance when sepa-
rating the patients into two groups with group parametes.set
In the plots of figure 9, we identified two main groups: Group
i) patients with smooth walking and an optimBteezeTH
0 0. below 2.5; Group ii) patients with intensified stepping and
3 7 12 7% 7 12 7% 7 12 17%'s 7 12 17 an optimalFreezeTHabove 2.5. Based on these findings, we

PowerTH in 2° analyzed the detection performance when grouping lihe

Fig. 9. Evaluation of parameter combinations: The black dotskntiae patients into these two groupsreezeTHand PO.\NerTH for
optimal parameter combination; the gray areas mark all pararoetebina- te two groups were chosen manually as the visual average of
tiogsd\:)v\i/f/?]vsa?:tegiti\?i?\ a(t:quratl:y less tkhan 5% below :he mf):]i‘rgmqmvarﬂd .the observation_in figure 9 The two parameter sets are mqued
e o o oo e ey " (he pIOts of figure  using upward and downward pointing
have FOG during our study. triangles. Figure 10c) presents the sensitivity/spetyfici the

two parameter sets for the patients with smooth walking and
shows the performance evaluation for patig€it By op- intensified stepping. On average the performance is 3.79 (ST
timizing the parameters for each individual user, we cah2.8%) below the optimal user-specific performance.
compute the maximum performance achievable with the givenThese results indicate that even with a simple method, e.g.
algorithm. a switch to select between two parameter sets, the system is

Figure 9 shows the evaluation of possible parameter coable to perform at a level close to the optimum performance.
binations for each individual patient. The black dots mau t This allows care personnel to rapidly setup the system and
optimal parameter combination. Gray areas mark all paramestill maintain good performance. It may also be used by the
combinations with a detection accuracy that is less than F9atients themselves to adjust the sensitivity and speyifodi
below the maximum. For some patients (e.g. patiéa®3,07) the system.
the algorithm performance is relatively insensitive to Bma
threshold variations. For some patients (e.g. patieg@5,06) B. Sensor placement characterization
the algorithm performance is only insensitive to fPmverTH In this section, we analyze the detection performance of
For patient08 the algorithm performance is most sensitive tthe system for different sensor placements and orienttion
the PowerTH As discussed previously, patiebfi is the patient determine the best sensor location while considering Huetr
most effected by PD and with akinesic (‘'without motion’)off between wearability and performance.

FOG. The akinesic FOG is an explanation for PewerTH For example, figure 11 shows famin long section of a
sensitivity. signal measured by the sensor at the hip and at the ankle of
When optimizing the two parameters for each patient, waatient02. Clearly there is a difference between the signals -
achieved on average a sensitivity of 88.6% and a specifi€itythe signal of the sensor at the hip is much smaller (damped),

92.4% This is the optimal sensitivity Seps and specificity but the motion is still very well visible. Table Il lists the
Speg,: that can be expected with optimized user specifiverage performance of the system for all 10 patients using
parameters, shown in figure 10a). the algorithm with global parameters (leave-one-out cross

Next we evaluated two other sets of parameters. First walidation). Results are listed for 12 combinations of ¢hre
evaluated parameters optimized globally for all usersrfusasensor positions (ankle, knee and hip) and four axes combi-
independent optimization). Then we evaluated two parametetions, which are the horizontal forward axisthe vertical

L I
T SIS NG|
L I

o o
o o

FreezeTH

L I N

S 2 oW SO

— 0 = N W H O

0
0
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Sensitivity-Specificity for optimal parameter set Sensitivity-Specificity for leave—one-out cross validation Sensitivity-Specificity for smooth/saccadic separation
4
100F o 100} 100} 410
274 10 4
5 b 2 o 6 v4
8. D:ilg = o o F10 v gSvQ %:17
80 28-9 80 80 2 3
03
— — o1 —
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(a) Sens-Spec for optimal patient dependent pa- (b) Sens-Spec for leave-one-out cross validation, (¢) Sens-Spec with parameter sets for smooth
rameter. patient independent parameter. walking and intensified stepping gait.

Fig. 10. Sensitivity and specificity plots for different pareter sets evaluated using the data of the vertical axiseolnkle sensor.

Patient 02, sensor at hip, vertical axis

= 4 X y z n
E o .....'......“ " ' III e
8 of Sensor at ankle
i_z I I Sens  87%(16%) 81%(14%) 80%(13%) 79%(15%)
0 50 100 um;S[gec] 200 250 300 \ Spec  87%(14%) 87%(11%) 819%(19%) 86%( 9%)
% C;’ Sensor at knee
8 =
= 10' ¢ SF Sens  76%(20%) 85%(13%) 82%(18%) 82%(15%)
,,,,,,,,,,,,,,,,,,,, ©
g 10} 5% Spec  85%(16%) 88%(13%) 84%(20%) 83%(13%)
2 4o ‘ ‘ ‘ ‘ ‘ s e ;
=g 50 100 150 200 250 300 |<8 Sensor at hip
time [sec] Qe Sens  81%(19%) 71%(25%) 78%(32%) 78%(19%)
FOG| M—H—U—H—L 23 Spec  84%(28%) 79%(20%) 79%(22%) 80%(24%)
i)
/ TABLE Il
no FOG ‘ ‘ ‘ T BT W N SENSOR POSITION EVALUATION SENSITIVITY AND SPECIFICITY (& STD)
0 50 100 150 200 250 300 FOR EACH COMBINATION OF SENSOR POSITIONANKLE, KNEE, HIP) AND
time [sec] AXIS ORIENTATION (z = HORIZONTAL FORWARD, ¥ = VERTICAL, 2 =
Patient 02, sensor at ankle, vertical axis HORIZONTAL LATERAL AND n = /22 + y2 + 22 = MAGNITUDE OF ALL
g 4 THREE AXIS).
= 2
g 0
;\ 2 [TTT T T T TTTITTyd
0 50 100 150 200
< time [sec] g  C. Latency optimization
° cE
:f 10 23 Latency refers to the time between the onset of FOG and the
3 :g 9%  time it takes the system to react. In this section, we analyae
o ‘ ‘ ‘ ‘ ‘ , |E® . L
= o 50 100 150 200 250 300| <8 potential for latency optimization. The latency of the altiom
time [sec] g1l is dominated by the data sampling window length used.
FOGH 58
= Detection performance vs. latency (2sec tolerance)
no FOG | | / W————
0 50 100 150 200 250 300

©
o
T
.

time [sec]

Fig. 11. A 5min signal extract from patient 02 using data frdra sensor
at the hip (upper plot) and at the ankle (lower plot) togethih the freeze
index (FI) and the FOG detected parts.

min(Sensitivity, Specificity)
~ o
a1 o

axis y, the horizontal lateral axis and the magnitude of all 025 05 1 15 2 215,3‘ 35 4 45 555 6 65 7 75 8
WindowLength [sec]

three axesy = /22 + y? + 22.

The best results are achieved when using the vertical akig. 12. Detection performance vs. window length (latency)
of the sensor at the knee. However, placing sensors on the
thigh just above the knee is the most inconvenient position t For this analysis, we plotted the accuracy of FOG detection
wear a sensor. The detection accuracy for the sensor platenversus window length (see figure 12) - keeping the frequency
at other positions is nevertheless quite good. These gesu#tsolution identical by zero-padding [27]. When increaghngy
are very promising, because sensors can be placed at a marelow length up to a maximum ot.5 sec, the detection
convenient body position without losing much in accuracy. performance increases. Further increases in the windosv siz

~
o
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reduce the detection performance again. This behavior eanviith a user-independent sensitivity of 73.1% and a spetifici
explained as follow: An increasing window length improvesf 81.6%.
the calculation of the correct frequency spectrum by redyuci Due to the large variability between patients’ gait we
the leakage-effect and resulting in an upward sloping cun&owed that a user specific parameter optimization improves
Additionally, an increasing window length also increadas t the detection performance up to 88.6% sensitivity and 92.4%
latency of the algorithm, resulting in more missed FOG evengpecificity. A rough segmentation of the patients into srhoot
and a reduction of the detection accuracy. Therefore thed intensified stepping walkers, together with a specifisise
optimal window length for the best detection performandivity adjustment improved the detection performance t®8b
when taking latency into account ds5 sec. sensitivity and 90.9% specificity. With a global threshcéd,
detection accuracy of 78.1% sensitivity and 86.9% spetjfici
was achieved.

We received promising feedback from the participants.

The limitations of this study are the short time available f(Some patients even expressed the motivation to wear the sys-
the patients to test the system, the limited number of pesties tem for several weeks. However this has to be taken carefully
well as its execution in a medical center and not an actusf dabecause the patients did not use the system for more than one
life environment. Although all ten patients reported admgiof hour. Further miniaturization potentially increases ataace
FOG, only eight experienced freezing during the experimertity patients. The answers obtained from studying the infleenc
The controlled environment of the study and the presence arid effects of automatic cueing were also promising. Attleas
the physiotherapist may have reduced the likelihood of FO®alf of the participants saw a positive effect. The demand fo
in the two patients who did not experience any FOG evemiore frequent RAS feedback of the participants for whom the
during the study. Both patients reported many FOG eventssystem had a low sensitivity shows that these patientstatt t
home and could not explain why they did not have any FOthe feedback helped them. On the other hand, the demand
during the study. They expressed a desire to test our devioe less auditory feedback of the participants for whom the
during their natural daily activities. system had a low specificity suggests that continuous RAS

Further investigations are required to analyze and demanay be annoying and that a context aware triggering of the
strate real-world performance. We still do not know hoWRAS is preferable.
patients will judge the benefit of the system after using it The analysis of three different sensor locations showed tha
for hours over several days. We speculated that after aalinitall three locations could be used for FOG detection although
training period the machine human interface will becomeenacthere are minor differences in detection performance. The
automatic and subconscious. ankle position is especially promising because it coulcbna

In this study we used a customized general purpose maategration of the sensor into a shoe. At the hip positioe, th
ular research platform. There are several areas for teghnigensor could be integrated into a belt. However the sensor
improvements [28]. This modular platform could be turnetbcation at the hip is much more parameter sensitive anether
into a specialized system specifically designed for our.tadkre less preferable for real world applications. Perfanosa
It could be miniaturized into a single sensor node that imay be further increased by using sensor fusion, espedailly
cludes the FOG algorithm. Roggen et al. have shown theatients where freezing does not result in tremor in botk.leg
complex calculations such as FFT, which are used in theour preliminary investigation we have used our flexiblet y
online detection of FOG, can be processed with low powbtlky general purpose wearable computing platform. Howeve
consumption on a device of the size of a button [29]. Suchthe algorithmic complexity suggests the design of a spieeial
system could be entirely integrated into or attached to mbrnsystem which is miniaturized to the size of a button, and
shoes of the patient, and only the trigger signal for the RASincludes the FOG algorithm integrated directly into thessen
transmitted to the feedback device. The RAS could be giveote itself.
via a hearing-aid like device or even a hearing aid itselisTh
implementation remains the object of future work. However ACKNOWLEDGMENT
a complexity analysis of the algorithms shows that this is a e thank the patients for their participation, time and effo
realistic goal. Future research needs to address diff(#8&® \ve also thank Ms Noit Inbar, Ms Talia Herman, Ms Marina

sounds in more detail. While regular rhythms are an importagtozgol and Mr. Eliya Shaviv for their invaluable assistanc
feature of the auditory stimulation, they may be embedded
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